UNIVERSIDAD DE BUENOS AIRES FACULTAD DE AGRONOMIA CARRERA DISEÑO DEL PAISAJE

Asignatura: Topografía

Cátedra: Hourcade

Año Académico:

Curso: 1º cuatrimestre

PROGRAMA ANALÍTICO

I-Objetivo de la Topografía. Importancia en el diseño del paisaje. Etapas de trabajo: relevamiento, proyecto y replanteo de datos. Medición: unidades de medidas de longitudes, superficies y ángulos. Medición lineal directa: uso de cinta de agrimensor y cinta ruleta. Determinación de la longitud del paso. Aplicaciones y precisiones. Alineación: simple y con obstáculos. Errores de medición: teoría, clasificación, ejemplos. Propagación de errores. Tolerancias.

Il-Determinación analítica de ángulos. Teoremas del seno y del coseno. Determinación de superficies a campo. Fórmula de Herón. Planos topográficos: confección, elección de la escala, precisión cartográfica, símbolos cartográficos.

III-Medición de superficies sobre planos: resolución gráfica. Formas regulares e irregulares. Fórmula de Beazout. Resolución mecánica. Planímetro polar: descripción, uso, precisión, aplicaciones.

IV-Relevamientos planimétricos. Método constructivo. Método de las coordenadas rectangulares. Método de las coordenadas polares. Aplicaciones, ventajas y desventajas. Instrumental apropiado. Escuadra de espejos: fundamento, precisión y aplicaciones. Escuadra de prismas: fundamento, diferencias con la escuadra de espejos, precisión y aplicaciones. Resolución de problemas de obstáculos. Determinación de ángulos. Sextante topográfico: fundamento, descripción, aplicaciones. Errores instrumentales. Aproximación del vernier. Precisión. Brújula de Brunton: fundamento, descripción. Norte magnético y geográfico. Declinación magnética. Rumbo y acimut. Precisión y aplicaciones.

V-Altimetría. Objetivos de la nivelación. Aplicación en Diseño del Paisaje. Métodos de nivelación: principios y precisión alcanzadas de la nivelación trigonométrica, barométrica y geométrica. Nivelación trigonométrica: eclímetro. Medición de ángulos de altura y pendientes. Determinación de desniveles y altura de objetos. Otros métodos de medición de alturas.

VI-Nivelación geométrica: nivel de manguera, descripción, uso, precisión. Nivel de reglón: descripción, uso, precisión. Nivel de anteojo: descripción, niveles ópticos y automáticos, nivel tubular, sensibilidad y precisión. Hilos estadimétricos. Constantes estadimétricas. Miras, uso, precisión de la medición estadimétrica. Ventajas y desventajas de cada instrumento. Superficies de referencia. Cota. Polígonos de nivelación, nivelación por rodeo. Tolerancia. Cálculo de planillas. Vinculaciones.

VII-Nivelación de una línea. Perfiles longitudinales y transversales. Proyectos de construcción de canales: cálculo del movimiento de tierra. Nivelación de una superficie: nivelación areal expeditiva y con estaqueo previo. Taquimetría con nivel. Descripción, ventajas y desventajas. Aplicaciones.

VIII-Sistematización: proyectos de diseños de canchas deportivas y otras sistematizaciones. Diseño con pendiente cero, a dos aguas, piramidal, cónico y casquete esférico. Consideraciones técnicas. Cálculo del volumen de tierra. Ejecución y control de obra.

IX-Replanteos: materialización de elementos en el terreno. Replanteo de líneas. Alineación con y sin obstáculos. Replanteo de ángulos con distintos instrumentos. Replanteo de formas geométricas para el Diseño del Paisaje. Replanteos altimétricos.

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE AGRONOMIA CARRERA DISEÑO DEL PAISAJE

Asignatura: Topografía Cátedra: Hourcade Año Académico: Curso: 1º cuatrimestre

PROGRAMA DE EXÁMEN

- Bol. 1 Objetivo de la topografia. Importancia en el Diseño del Paisaje. Etapas de trabajo: relevamiento, proyecto y replanteo de datos. Determinación analítica de ngulos. Teorema del seno y del coseno. Determinación de superficies a campo. Fórmula de Herón. Nivelación trigonométrica: eclímetro. Medición de ángulos de altura y pendientes. Determinación de desniveles y altura de objetos. Otros métodos de medición de altura.
- Bol. 2 Errores de medición: teoría, clasificación, ejemplos. Propagación de errores. Tolerancias. Medición de superficies sobre planos: resolución gráfica. Formas regulares e irregulares. Fórmula de Beazout. Altimetría. Objetivos de la nivelación. Aplicación en el Diseño del Paisaje. Métodos de nivelación: principios y precisión alcanzadas en la nivelación trigonométrica, barométrica y geométrica.
- Bol. 3 Medición: unidades de medidas de longitudes, superficies y ángulos. Medición lineal directa: uso de cinta de agrimensor y cinta ruleta. Longitud del paso. Aplicaciones y precisiones. Alineación simple y con obstáculos. Nivelación geométrica: nivel de manguera, nivel de reglón; descripción, uso, precisión. Nivel de anteojo: descripción, niveles ópticos y automáticos, nivel tubular sensibilidad y precisión. Hilos estadimétricos, constantes estadimétricas. Miras, uso, precisión. Ventajas y desventajas de cada instrumento.
- Bol. 4 Planos topográficos: confección, elección de la escala, precisión cartográfica, símbolos cartográficos. Relevamientos planimétricos. Método constructivo. Metodo de las coordenadas rectangulares. Método de las coordenadas polares. Aplicaciones. Ventajas y desventajas. Instrumental. Nivelación geométrica: superficies de referencia. Cota. Polígonos de nivelación, nivelación por rodeo. Tolerancia. Cálculo de planillas. Vinculaciones.
- Bol. 5 Determinación de superficies sobre planos: resolución mecánica. Planímetro polar: descripción, uso, precisión, aplicaciones. Escuadra de espejos: fundamento, precisión y aplicaciones. Escuadra de prismas: fundamento, diferencias con la escuadra de espejos, precisión y aplicaciones. Resolución de problemas de obstáculos. Determinación de ángulos. Nivelación geométrica: nivelación de una línea; perfiles longitudinales y transversales. Proyectos de construcción de canales. Cálculo del movimiento de tierra.
- Bol. 6 Sextante topográfico: fundamento, descripción, aplicaciones. Errores instrumentales. Aproximación del vemier. Precisión. Brújula de Brunton: fundamento, descripción. Norte magnético y geográfico. Declinación magnética. Rumbo y azimut. Precisión y aplicaciones. Nivelación de una superficie: nivelación areal expeditiva y con estaqueo previo. Taquimetría con nivel. Descripción, ventajas y desventajas. Aplicaciones.
- Bol. 7 Replanteos: materialización de elementos en el terreno. Replanteo de líneas. Alineación con y sin obstáculos. Replanteo de ángulos con distintos instrumentos. Replanteos de formas geométricas para el Diseño del Paisaje. Sistematización: proyectos de diseños de canchas deportivas y otras. Diseño con pendiente cero, a dos aguas, piramidal, cónico y casquete esférico. Consideraciones técnicas. Cálculo del movimiento de tierra. Ejecución y control de obra.

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE AGRONOMIA CARRERA DISEÑO DEL PAISAJE

Asignatura: Topografía Año Académico:
Cátedra: Hourcade Curso: 1º cuatrimestre

- Bol. 8 Planos topográficos: confección, elección de la escala, precisión cartográfica, símbolos cartográficos. Relevamientos planimétricos. Método constructivo. Método de las coordenadas rectangulares. Método de las coordenadas polares. Aplicaciones, ventajas y desventajas, instrumental. Nivelación geométrica: nivel de manguera y nivel de reglón, descripción, uso y precisión. Nivel de anteojo: descripción, niveles ópticos y automáticos, nivel tubular, sensibilidad y precisión. Hilos y constantes estadimétricas. Miras, uso y precisión de la medición estadimétrica. Ventajas y desventajas de cada instrumento.
- Bol. 9 Unidades de medida de longitud, superficie y ángulos. Medición lineal directa: uso de la cinta de agrimensor y cinta ruleta. Alineación simple y con obstáculos. Longitud del paso, aplicaciones y precisiones. Medición de superficies sobre planos. Resolución gráfica y mecánica. Nivelación de una línea: perfiles longitudinales y transversales. Proyectos de construcción de canales: cálculo del movimiento de tierra. Replanteos altimétricos.
- Bol. 10- Determinación analítica de ángulos. Teoremas del seno y del coseno. Determinación de superficies a campo. Fórmula de Herón. Replanteos planimétricos. Nivelación de superficies: nivelación areal expeditiva y con estaqueo previo. Taquimetría con nivel. Descripción, ventajas y desventajas, aplicaciones.
- Bol. 11- Sextante topográfico: fundamento, descripción, aplicaciones. Errores instrumentales. Aproximación del vernier. Precisión. Escuadra de prismas: fundamento, precisión y aplicaciones. Diferencias con la escuadra de espejos. Resolución de problemas de obstáculos. Determinación de ángulos. Nivelación trigonométrica: eclímetro. Medición de ángulos de altura y pendientes. Determinación de desniveles y altura de objetos. Otros métodos de medición de alturas.
- Bol. 12- Brújula de Brunton: fundamento, descripción. Norte magnético y geográfico. Declinación magnética. Rumbo y azimut. Precisión y aplicaciones. Objetivo de la topografía: importancia en el diseño del paisaje. Etapas de trabajo: relevamiento, proyecto y replanteo de datos. Sistematización: proyectos de diseño de canchas deportivas y otras. Diseño con pendiente cero, a dos aguas, piramidal, cónico y casquete esférico. Consideraciones técnicas. Cálculo del volumen de tierra. Ejecución y control de obra.

MVIRT